AI芯片投资人应具有的知识储备和投资逻辑

来源:虎嗅网

本文作者韦辰睿,来自光远资本,题图来自视觉中国

去年10月,我帮着同事做了第一个AI芯片的项目,到现在为止,已经深度参与了三个AI芯片相关的deal,感觉到自己对这个行业的认知已经可以尝试着上升到一个投资逻辑的层面了。因此在正常搬砖之余,花了大概一周多的时间,把自己对AI芯片行业的insight梳理了出来,并且输出了一套相关投资逻辑。

本文分为五个部分:

1.AI芯片是什么   2.AI芯片投资人应该具有哪些知识储备   3.AI芯片的竞争格局   4.AI芯片的发展趋势   5.AI芯片的投资逻辑

AI芯片是什么

1、AI芯片的概念

AI芯片的出现本身是在适应“新的计算范式”的出现。AI芯片又称为加速卡:其“加速”二字是指,随着新的计算范式出现,原有的基于串行计算的CPU规则不能很快的完成AI计算,因此将简单并重复的运算抽离出来,通过CPU+AI加速卡的形式来完成计算。

AI芯片所负责的计算具有较简单、重复、计算量大和参数量大的特点,其背后是两个原因:

首先,从处理对象上来看,AI芯片处理的内容往往是非结构化数据,例如图像、视频、音频等,相比结构化数据,这部分数据并非按行存储,很难通过预编程的方式来得到处理结果,因此一般通过极大量的数据对模型进行训练,进而得到模型结果。

其次,AI的技术路线逐渐趋于统计学。由于实际问题和场景的规则通常十分复杂,基于统计的AI模型相比基于规则的AI模型,逐步体现出了优势,也带来了大量的简单的、统计学概念上的运算过程。

因此,目前的硬件架构通常是CPU+AI芯片,即CPU用于进程的管理,而将可加速的计算部分分给AI芯片来进行加速计算。

2、AI芯片的分类

AI芯片通常按照应用场景和计算类型来划分,根据两个维度划分成下图的矩阵类型:

训练和推理有所区别,但有时候会在同一颗芯片上完成。简单来说,训练过程是指在已有数据中学习,获得某些能力的过程;而推断过程则是指对新的数据,使用这些能力完成特定任务(比如分类、识别等)。

但是实际上我们可以看出,训练和推理芯片的划分方式其实是基于一个假设:即训练完成的模型不需要进一步地迭代改进。但是在增强学习、在线学习这样的技术中,模型的迭代和应用是交织在一起的,训练和推理很难区分开,因此我们会看到某些厂商推出的芯片会同时支持训练和推理功能。

训练和推理对于功耗和通用性的要求不同。我们观察到,训练过程基本是在云端,而推理过程既存在于云端,也存在于边缘端,这背后是源于不同的应用场景对功耗和通用性的要求不同。

1.功耗:芯片用于云端意味着它的供电是来源于总线,而不用受到边缘端设备电池容量的影响,当然出于能耗考虑,云端芯片功耗也不能太高。我选了几个代表性的芯片列示在下面,可以看出,云端芯片的功耗会更高。

2.通用性:云端芯片会承担更丰富的职能,因此通用性要求会更高,而芯片越靠近边缘侧,其对应的应用越细分,对芯片的通用性要求越低。

总的来说,云侧AI处理主要强调精度、处理能力、内存容量和带宽;边缘设备中的AI处理则主要   做相关的背景知识储备,一方面是为了识别不同应用场景所对应的芯片解决方案,另一方面也是可以更准确的找到某家目标公司产品的对标芯片方案。   2、芯片生产的流程、对应的能力结构和时间线   做这方面的背景知识储备,一方面是专业性的知识积累,以便和创业者聊到一块去,另一方面是要对不同类型的芯片企业的部门职能配置有一个判定标准。   3、Fabless芯片公司所需要承担的成本   这块的目的就是两个字:算账。

1、芯片的类型及其适用场景

重点是厘清几个概念之间的区别与关系:CPU与GPU、SOC和MCU、数字芯片和模拟芯片、ASIC和FPGA、指令集与架构、IP核与EDA。

这里可能看起来内容有些多,在2.1的结尾,我画了一张芯片类型的思维导图,可以直接翻下去看。

2.1.1CPU和GPU

CPU是我们非常熟悉的概念,全称为中央处理器(CentralProcessingUnit),功能是解释计算机的指令和处理软件中的数据;

而GPU全称为图形处理器(GraphicProcessingUnit),最早是中央处理器的一个单元,后来随着NVIDIAGeForce的发布,开始将图形运算从CPU中单独剥离出来,以提高运行效率。随着AI的发展,由于AI运算和图形运算有较大的相似性,因此GPU也被拿来做AI算法的训练和推理。

CPU和GPU的区别本质上在于其被设计出来的目的不同。

CPU作为一台计算机/服务器的核心处理单元,需要解决极强的通用性问题,因此需要兼容多种数据类型,并且由于CPU需要大量的逻辑判断,带来了很多的分支处理和中断处理,使得CPU内部的结构十分复杂;而GPU面对的则是大量不相关、类型高度统一的大规模数据,适用于大规模并发计算。因此,CPU和GPU本身的结构设计就有很大不同:

GPU相比CPU,逻辑控制非常简单,设计了大量的并行计算单元,并且大大减少了缓存。缓存在CPU中主要用于减少处理器访问内存所需平均时间,而GPU中的缓存主要用于多线程控制,如果很多线程需要访问同一个相同的数据,GPU会将其合并到缓存中。

总而言之,CPU和GPU设计的目的不同,因此结构和应用场景也不同,CPU更具通用性,GPU在特定需求下(需要并行、计算密集型的程序)则具有压倒性优势。

2.1.2CPU、MCU、SoC、MCU、DSP、MPU

还是以CPU为基础来分析。CPU本身是一个处理器(ProcessingUnit),因此并不能单独用于某一个需求场景,需要搭配存储、接口等才能构成一个完整的计算机。

因此,围绕着处理器,集成的单元不同,构成的芯片也不同,常见的概念有MPU、MCU和SoC。

MPU和CPU早年概念区别明显,但是现在趋于一致。二者的区别在名称中可以窥见端倪,MPU是MicroProcessingUnit,CPU是CentralProcessingUnit,因此,MPU的概念在刚提出时,是对应着“Micro”的概念的。因为当时的计算机还有大型机、中型机、微型机的区分,因此一开始,MPU是代表着性能较弱、用于“Micro”场景的CPU。

但是“Micro”这一点,随着计算机技术和MPU性能的发展,逐渐淡化。当前MPU可以认为是包含了一颗CPU和其他协处理器的一个处理单元,MPU和CPU的区别也在逐渐弱化。例如我们熟知的Intel酷睿i7,既是MPU,也是CPU。

MCU专用于控制,是经典的冯诺依曼架构,但性能较弱。至于MCU的概念,全称是MicroControllerUnit,中文称之为微控制单元,当然也有人称之为单片机(单片微型计算机,SingleChipMicro   IP:芯片上有很多功能,有的功能是通过外采的IPCore来实现,有的功能是自己开发实现,验证团队需要确保每一个IP都是可用并且合格的   SoC:当整个芯片方案确定出来,验证团队需要确保芯片上的IPCore、布局、排线都没什么问题,确保整个芯片的性能和稳定性达到设计要求。

验证的工作流程分为几步:测试计划的制定、测试环境的搭建、创建Case并运行,将Case的通过率和覆盖率优化至%,然后做后仿真测试(即Emulation)。

2.2.4关于IC设计的耗时

整个IC设计流程的耗时,我将流程时间线摘了出来,如下图:

对于Fabless芯片企业来讲,企业所做的主要是需求确定和前端设计,这部分耗时比较久,可能需要1~3年的时间,具体要看公司团队的能力和经验,如果团队设计能力较强,可能一年就能完成前端的设计。

后端设计通常是外包给专业的后端公司,并且如果Fabless企业和Foundry关系不好的话,后端设计企业还可以起到从中斡旋排期的左右。通常,后端设计需要3个月左右;

流片最快需要2个月,但是需要考虑到排期和成功率的问题。如果流片顺利,最快2个月就可以拿到回片。但是流片过程有两大不确定性:

1.代工厂的先进制程(比如7nm工艺)是非常紧俏的。尤其是台积电这种代工厂,它的7nm产线一般都是供给华为、苹果这样的大客户,如果创业公司想去流片一个7nm的芯片,如果和代工厂的关系不够硬,排期可能会受到大客户的挤压,时间不可控。   2.流片失败的风险:虽然IC设计和验证的流程都已经非常成熟了,出来做芯片的人一般是行业大牛,都是有两把刷子的,但是谁也不能保证流片就%成功。典型的反面案例就是小米旗下的松果电子,流片失败了5次。   流片失败一方面带来金钱损失,另一方面,流片失败后,公司要重新从前端设计开始找原因,时间非常不可控。我们做投资的可能很容易理解,让我去改一个问题不知道出在哪的Model,耗时可能比重新搭一个还久。

客户验证及测试还需要半年~一年半。芯片流片回来,要根据下游客户需求做成方案,包括但不限于封装成模组、做成整机、再做性能的优化等等,芯片做得好、客户要得急,客户验证就快一些,不然这个时间也是非常不可控的。

总的来说,从芯片研发启动开始,到形成销售,不出意外的话也需要2-4年:总的加起来,如果整个过程都顺利,从芯片研发立项开始,到最后形成芯片销售,需要2-4年的时间,4年的时间甚至超过了很多人民币基金的投资期,因此如果资本以种子的形式投到芯片企业里,一定要做好长期陪跑,甚至血本无归的准备。

3、IC设计公司需要承担的成本与投资节点

2.3.1IC设计公司成本模型

前面一直在讲IC设计的时间线,接下来分析一下IC设计的资金线,即公司大概要花多少钱、量产后芯片的销售成本是多少。

首先我们对芯片生产中的FixedCost和VariableCost做一个区分:芯片的固定成本包括流片费用、后端外包费用、EDA软件授权费等;可变成本包括IP采购费用、测试成本、封装成本和生产时的硅片成本。具体见下表:

可以看出,相比单颗芯片的可变成本,芯片的固定成本是极高的,因此,我搭建了一个简单的、芯片成本基于芯片出货量的敏感性分析。

2.3.2财务投资者投资芯片的企业的最优节点

从芯片企业的角度来讲,企业对于资金的需求集中于两个节点:前端设计之前和流片之前。

第一个时间点出现在公司成立初,因为要拉起来一票高层次芯片人才出来创业,需要支付工资。一个早期芯片公司,至少需要30人的研发团队,其中至少包括3~4个芯片大牛,就算芯片大牛全要股份不要钱,这30个芯片工程师,薪酬30w/人/年,一年万人民币。算上办公场地和其他研发费用(EDA授权费和IP授权费,这俩都是预付、服务器和硬件设备采购),一个早期芯片企业每年的现金流出至少是0万人民币。

第二个时间点出现在流片前。流片是要花很多钱的,这个钱主要是做掩膜版(Mask)的钱,制程越先进,花钱越多。22nm工艺的一次流片成本是80万美金;12nm工艺的一次流片成本是万美金。至于目前最先进的7nm工艺,华为麒麟的流片成本是0万美金。当然华为肯定是FullMask,如果创业公司用MPW方式去做的话,我猜0万美金应该是有的(没有验证过,欢迎指正)。

做芯片公司第一轮投资者,风险其实比较高,但收益也比较高。对于财务投资者,要么是看好技术团队的长期实力,在团队组建之初就投进去,这样投的风险比较大,因为还要考虑到团队组建不利的风险,以及需要等待漫长的前端设计时间。但是好处是,如果公司研发走向正轨,这样后续至少会有一轮融资,因为流片前公司必开一轮融资,就算公司倒闭了,第一轮投资者也有人垫背(狗头)。

财务投资者的最优投资节点应该是流片前的一轮。通常这一轮会是芯片企业融资的第二轮,这个时间点风险相对低了一些,主要原因是随着芯片方案的不断完善,公司也在不断的和下游潜在客户沟通、和需求做Match。这样子的话,公司风险主要是流片失败的风险。而一旦流片成功,在出货方面会顺利一些。

我之所以认为这一轮是最合适的一轮,一方面是因为这一轮风险收益的对比更对我的口味,另一方面是,如果想在种子轮投到行业大牛出来创业的企业里,投资人一定是要在那个圈子里浸淫,但是像市面上大多数财务投资机构,是没有那个人脉和判断能力的。

流片之后,整个融资节奏会转向“产业投资人为主,财务投资人跟投”的状态。当芯片企业成功流片之后,公司的基本面中,流片失败的风险预期会被极大的排除,通常公司会有一轮估值飙升,公司也会借此机会囤积资金做商业化和进一步的研发投入(比如下一颗芯片)。

而这个阶段的企业会进入产业资本的视野,背后有几个原因:

1.产业资本有足够的底气投进任何公司,因此不需要承担风险。产业资本分为两种,一种是大型企业的战投,一种是国家背景的半导体基金。前者希望深度绑定AI芯片企业,让它根据自己的需求研发,而流片成功的企业证明了自己团队的研发实力,因此大企业的战投会以投资的方式进入;当然强迫站队也是一个原因。另一种产业资本是国家背景的半导体基金,这种产业资本有钱,但是内部决策流程复杂,风险承受能力弱(投亏了要背锅的),这种流片成功的企业风险小了很多,其实是国家队眼中的优质标的;

2.产业资本和财务投资者不同,在一个细分行业里,产业资本的视野可以认为是没有盲区的:和财务投资者不同,不管是大公司还是国家队,都有顶层的信息获取能力,使得他们能够Cover到


转载请注明:http://www.aierlanlan.com/cyrz/1132.html